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Abstract— The size-effect of structural element has been experimentally determined in concrete
members under various load types. The importance of size-effect on safe structural design has been
well recognized. Theoretical models explaining and predicting size-effect bused on fracture mechanics
of brittle and guasi-brittle materials have made significant advances in the last decade.

Structural size-effect can be reduced by modifying the crack bridging behavior of concrete. An
effective means of controlling the crack bridging law is by fiber reinforcement. Since the bridging
law is fundamentally governed by fiber and interfuce properties, proper materials engineering can
lead to effective means of reducing structural size-effect.

This paper studies analvtically the effectiveness of fiber bridging on the FRC beam structural
size effect, by meuns of a flexural model which takes into account matrix crack extension and tiber
bridging. The flexural strength (MORY} is shown to decrease with beam height following Bazant's
Size-Effect Law for ordiary concrete. When fiber bridging is introduced. the MOR 1s shown to be
much less dependent on matrix properties. Instead fiber and interface parameters dominate the
MOR of the FRC beam. At the same time, beam height-size-eftect on MOR is shown {o diminish
within the practical range of real structural sizes. The relationships between structural strength
MOR, the composite -+ bridging relation, the material characteristics length, and the constituent
fiber. matrix and interface properties are clarified. A generic size-effect law for FRC beuams is
obtained. Other related issues such as size-effects on R-curve behavior, critical crack length at MOR.
ete., are also studied. ¢ 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

The size-effect of structural element. as one of the most important consequences of fracture
mechanics, has been studied both experimentally and theoretically in concrete members
over the last decade (c.g., Bazant, 1984, 1987, 1992 ; Bazant and Kazemi, 1990 ; Carpinteri,
1989). Knowledge of the size effect is of great importance for the safe design of structures.
For brittle materials, the maximum nominal stress size-effect of geometrically similar
structure elements (e.g., beams) with initial notches can be most illustratively explained by
the following LEFM result:
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where gy is the nominal maximum stress, K¢ is the material fracture toughness, and a, and
b are the initial crack length and beam height, respectively. In the case of a 3-point bending
beam with beam height 4, span S and unit thickness (Fig. 1), o and fla,/b) are given by
(Tada er al., 1985) :

Oy = (2a)

and
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Fig. 1. Geometric and loading configurations of a three-point bending FRC beam.
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[t should be noted that eqn (2b) is given for 5/h = 4 and any a,/b. For other S/6 ratios, the
accuracy of (2b) will slightly decrease.

For quasi-brittle materials, such as concrete, rocks, and fiber-reinforced cement com-
posites, crack extension in a structural element is associated with the growth of fracture
process zone (FPZ). the property of which can be characterized by cohesive stress or
bridging stress vs crack opening displacement (ay-9) relation (Barenblat, 1962 ; Hillerborg,
1983). L1 and Liang (1986) has demonstrated that the fracture process zone length and the
fracture resistance, in general, are not material properties but depends on the geometry of
the specimen and the loading configurations. They also concluded that the use of LEFM
for crack analysis in concrete and FRC structures are generally invalid unless all relevant
structural dimensions are much larger than the steady-state process zone size, and the oy~
o relation must be used as a fTundamental material property in a nonlinear fracture mechanics
analysis.

Without getting into detailed nonlinear fracture mechanics analysis. Bazant and Kaz-
emi (1990) introduced a size-effect law for nominal strength of concrete structures
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where Gyand ¢, are the fracture energy and the equivalent eftective length of fracture process
zone for an infinitely large specimen, respectively ; g(x,) = (C.f(%,))* and C, = 1.55/b for a
three-point bending beam. Equation (3) captures the correct trend of structural size-effect
in concrete in a simple, easy-to-use form although it is only approximate due to the
truncation of the Taylor series of g(x) in its derivation.

When fibers are introduced, the fracture energy. strength and ductility of an ordinary
concrete element can be greatly improved. Fiber reinforcement also adds another dimension
to materials engineering in reducing structural size-effect via the control of crack bridging
behavior. Furthermore, recent development in FRC structural applications, such as the
steel fiber reinforced concrete (SFRC) tunnel linings in Japan (Li, 1995 Nanakorn ¢7 al..
1996), posts new challenges in the load-carrying-capacity design for these FRC structures.
Predictive capability is certainly needed at both the material and structural level to provide
design guidelines in FRC structural applications.
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In order to address the above-mentioned issues, quantitative studies explicitly taking
into account the FPZ development in FRC structures must be carried out. The crucial
information needed will be the crack bridging relation. The crack bridging law as a fun-
damental material property has been well established in terms of fiber, matrix and interface
characteristics, based on micromechanical models of the bridging mechanism of randomly
oriented short straight fibers (Li, 1992; Li ef @f., 1991 ; Lin and Li, 1997). Further link of
those fundamental properties to the structural size-effect through the g4z-d relation is
needed. Establishing such u link can provide analytic tools for predicting FRC structural
load-carrying capacity as well as effective means of reducing structural size-effect through
proper materials engineering. In this paper, these issues will be addressed by employing a
generic nonlinear fracture mechanics formulation. A three-point bending model which
takes into account matrix crack extension and fiber bridging is considered. The relationships
between the structural nominal flexural strength (MOR), the composite g6 bridging
relation, the material characteristics length, and the constituent fiber, matrix and interface
properties are clarified. A generic size-effect law for FRC beams is obtained. The influence
of fiber bridging on the size-effects of R-curve behavior and critical crack length at MOR
are also analyzed.

APPROACH

In this section, a generic nonlinear fracture mechanics formulation is presented. Based
on this formulation, numerical simulations can be performed to obtain the flexural loading
associated with matrix crack extension with fiber bridging in a three-point bending FRC
beam. Detailed crack opening profiles and bridging stress distributions in the fracture
process zone can be computed as well.

Formulation

Figure 1 shows an initially notched three-point beam under mid-span point loading.
The load carrying capacity of the FRC beam is assumed to be controlled by the cracking
and bridging actions that take place at the mid-span cross-section. A bridged crack model
with stress singularity ahead of the fracture process zone is used (see Fig. 2) (Jeng and
Shah, 1985; Foote ef al., 1986 Cox and Marshall. 1991). The use of a singular model will
lead to realistic predictions of crack opening profiles and near-tip deformations (Gettu and
Shah, 1994).

Following the standard derivation outlined in Cox and Marshall (1991), the singular
integral equation governing the crack opening profile 4(x) coupled with applied flexural
stress o,(x) and bridging stress op(d(x)) is given by
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FFig. 2. The bridged crack model.
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dx) = 5 ( ; G a'. D)o, (x')—6,(5(x))] d,\"} G(x.a',hyda 4)
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where E’ is the composite Young's modulus (£ = E for plane stress and E' = E/(1 —v')
for plane strain); a,(x) = 6,(0)(1 —2x/b). a,(0) = (3PS/2b") for three-point bending case;
the weight function G(x. «, b) is given in the Appendix. Based on the superposition scheme,
the crack-tip stress intensily factor Ky, 15 given by

(‘(I
= KoKy =2 | G a b5, (x) = 0,(3())] dy (5)
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Upon crack extension. K, should be equal to the matrix toughness K,.. This gives an
additional equation for solving the applied load required for crack extension in (4). i.e..

~
!

2 Gl a e, () — (3] dy = K, (6)

Ju

In (4)-(6). the fundamental material property required is the crack bridging relation
ag{d(x)). Li (1992) has theoretically derived an expression for such a bridging law of
tension-softening type for randomly oriented short straight fiber reinforced composites,
and it 1s given by

gigy = {1 =0/(L. D] (")
where o, =gV, 1(L,/d;) is the maximum bidging stress: V. L, and /; are the fiber volume
fraction, fiber length and fiber diameter, respectively : 7 is the interface frictional stress and
¢ is the snubbing factor related to the angle effect when a fiber is pulled out at an inclined
angle relative to the loading axis (Morton and Groves, 1976 Li er al., 1990). It should be
noted that the crack bridging associated with fiber debonding process is ignored here based
on the consideration that in both laboratory-size and real-size structures, the crack opening
is generally large enough to get into the tension-softening range at maximum applied or
failure load. The fracture energy associated with (7) can be found by integrating the area
under the curve shown in Fig. 3 as follows
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Fig. 3. Non-dimensional tension-softening crack bridging law.
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G, = o,L:6 (8)

Both (7) and (8) have been compared with experimental data for steel-fiber and synthetic-
fiber reinforced cementitious composites of widely varying micromechanical parameters.
and good agreements were found (see Li, 1992 for detail ).

Equations (4) and (6) can be re-written in the following non-dimensional form by
using o, and L¢/2 as normalization factors for stress and length quantities. respectively.
That is

(™
Xy = 5,4 { { G(s, . BEX) —Zy(0(X)] dS} G(X,t. B)dr 9)
and
K a2 .
— "*Tl;::,: = S;l\/ A ( (;(.5‘, l, B) [Z(X) "‘ZB(()‘(/Y)),/S;,] dS (l())
(rll\// Tclch TE-/“
where
E'L
Iy = b Material characteristic length (11)
160,
S, = 0.(0)/o, = Normalized nominal flexural stress amplitude (12)
A = a'ly, = Normalized crack length (13)
B = b/l = Normalized beam height (14)
A , , ,
(X)) = 12X B (X = x/a) = Applied load pattern (15)
TL(0(X) = T _ [1 —&(X)]* = Normalized bridging law (16)

0

The material characteristic length /,, defined in (11) results from the normalization pro-
cedure and could be interpreted as proportional to the ratio of £ to the approximate post-
peak softening rate o,(Ly2). Combining (8) and (11}. Z,, can be also written as

_3nEG,

ch T

(17)

8a;

which is similar to that defined in Hillerborg (1983) and Li and Liang (1986). The quantity
B = b/l 1s defined as normalized beam height, and it also indicates the structural brittleness
as will be seen shortly. One may regard this quantity as the brittleness number.

The numerical scheme for solving equations (9) and (10) to find the nondimensional
applied load amplitude S, along with crack opening profiles for gradually increasing crack
lengths has been documented in Cox and Marshall (1991). to which readers are referred
for details. The maximum value of S, gives the normalized nominal flexural strength (MOR)
on/0e. From the above formulation, it can be concluded that
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Table 1. Parameter ranges identified in the present study

Parameter Range Note

Initial flaw a,’h 1 2% Initial material defect (assumed)
10-30% Notched specimens for size-effect study®

Material characteristic length /, 10°10' mP Ly =(rEL{160,)

Brittleness number B = bl 10 *-10 btreal): 107710 meters

K* = (K a4 Thy)) 0.01-0.5¢ (Ko thy) = 051 (G G

*e.g., Bazant and Pteiffer (1987). Duda and Konig (1990} and Chern and Tarng {199

"Ref. Hillerborg (1983). “ Ref. Okamura and Maekawa (1994).

<7, for cement paste and mortar is on the order of 10” and 10" J'm-. respectively. G- for FRCs is up to 109 I'm?
(Wang er al., 1991).

KII'I .
/0, = function (B, e a(,) (18)

’ h
To/ n/\;‘n '

The a,/b dependence in (18) results from the modification to the bridging stress distribution
Zu(X) in (9) and (10) by setting zero bridging stress along the initially notched (unbridged)
section of the crack. The dependence of structural strength oy/g, on the brittleness number
B and the initial crack size (a,/h) in FRC beams is analogous to similar dependence for
concrete beams. The parameter K* = (K, /a,/nl,), however, is unique for FRC beams.
K* can be interpreted as a relative matrix crack tip toughness to the FPZ fiber bridging
toughness.

The non-dimensional formulation presented here enables us to obtain a generic size-
effect law for FRC beams under flexural loading. Equation (18) also identifies the role of
fiber, matrix and interface properties in structural size-eflect.

Parameter ranges
Table 1 shows that realistic ranges for the parameters identified in (18). These ranges
will be covered in our numerical results presented in the next section.

RESULTS AND DISCUSSIONS

Effect of fiber bridging on failure modes of « FRC bean

Fiber bridging tends to stabilize the extension of matrix cracks. The effect of fiber
bridging is analogous to the crack closing action provided by distributed nonlinear springs
linking the matrix crack faces. Obviously, the brittle or ductile nature of the failure of a
FRC structure is strongly controlled by the quality of those nonlinear springs.

Figure 4 shows typical curves of flexural stress oy, ( = 0,(0)) vs crack length ¢ in a
normalized form. Given the brittleness number and initial notch, the stability of crack
growth is governed by the single parameter K*. Smaller K* values correspond to stronger
fiber bridging or lower matrix toughness K. The K* = 0.01 case shows stable crack growth
after it initiates until the fexural strength (MOR) is reached. We shall denote this failure
mode as Type Il (ductile). For K* = 0.05, crack growth is unstable ( flexural stress decreases
as the crack propagates) following the initiation. and it starts to become stable when crack
size (also, FPZ size) becomes large. at least under displacement controlled condition. But
the post-first-cracking flexural stress is still lower than the first cracking stress. The same
situation is found in K* = 0.1 case except that there is no stable matrix crack growth at all
due to the even poorer crack bridging effect. In the latter two cases. the failure of the FRC
beam will be catastrophic (Type L. brittle) if load control is assumed. The flexural strength
(MOR) for both cases will be taken at the initiation point, which is essentially controlled
by the matrix toughness K, and initial notch size «,, and follows the LEFM result (1) with
K =K,

[t is worth mentioning that the normalization for the flexural stress 6., is performed
according to (1) so that the starting points for all the cases will be the same.
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Fig. 4. Normalized flexural stress as a function of relative crack length for b/, = 0.01 and
ay’b = 0.02. The typical ductile failure mode (Type I} and brittle failure mode (Type 1I) are shown.

Generic size-effect law

It has been shown earlier that the normalized nominal strength of a FRC beam under
three-point bending oy/g, only depends on three non-dimensional parameters: B. K*, and
a,/b. In order to obtain such a generic size-effect law. extensive numerical calculations
have been carried out. To illustrate, Fig. 5(a)—(h) are presented here corresponding to
dy/b = 0.01, 0.02. 0.05, 0.1, 0.2, 0.3, 0.5 and 0.7 cases, respectively. The parallel straight
lines or line segments of slope (— },2) indicate Type [ (brittle) failure while curved portions
are related to Type II (ductile) failure as discussed in the previous section. When K* is
fixed, as the brittleness number B increases from 0.001, the failure mode undergoes a
transition from brittle to ductile. However, at larger values of B and for all values of K*.
curves revert back to the LEFM limit, which is given by (1) and

Ke = JEG+G,). Gy =KLE (19)

Here the composite elastic modulus £ & E}, is assumed, which is quite accurale for low
fiber volume fraction cases (c.g.. several percent). It can be shown that this LEFM limit
for ay/oy 18 given by

N B p . jgﬂ)l 2 - F{()\\ /2 b2 ’)
[ - (TE(K ) + 37-[ f h ’) /ch (.‘U)

/ / \

While the structural brittleness at large brittleness number has been well recognized.
the brittleness at small B revealed in this study is due to the inadequate FPZ development
as limited by small structural size b if other parameters are fixed.

On the other hand. as K* decreases from 0.5-0.01, meaning fiber bridging effect is
getting stronger, all the curves tend to collapse into a master curve (the bottom ones in Fig.
5(a)—(h)). Further decrease in K* makes essentially no difference. This implies that when
crack bridging is strong enough or the fracture energy is sufficiently high, the structural
size-effect is governed by the fundamental fiber and interface properties and the matrix
toughness becomes irrelevant. In the case of ductile failure, the limiting value of o./a, as
b —0or [, — oo is given by a plastic hinge analysis (Carpinteri. 1989). Referring to Fig. 6,
it is readily shown that
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and this “fully yielding”™ limit is shown as a dashed horizontal line in each of the plots
shown in Fig. 5.
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Fig. 6. Stress distribution und force balance in a plastic hinge analysis as b approaches zero.

It should be also pointed out that with all the material and geometric parameters other
than the beam height 4 fixed, the transition from brittle to ductile failure for small b
cases occurs at larger 5’s than for large a,/b cases (e.g.. ay/b = 0.02 vs a,’b = 0.2). This is
due to the fact that smaller initial notch requires higher first cracking load and a larger
subsequent FPZ to develop in order to realize Type 1l behavior. Alternativelv, a smaller
aytb 1s equivalent to a larger K.

Figure 7 shows the predicted nominal strength for ductile FRC beams (K* < 0.01) as
a function of the brittleness number B and initial notch a,/b.

As an example. Fig. 8 shows the comparison among a 2% polyethylene (Spectra 900)
FRC, ordinary concrete and mortar (Bazant and Pfeiffer, 1987) as well as high strength
concrete (HSC) (Duda and Konig. 1990) in terms of size-effect in real dimensions. The
MOR values for 2% Spectra 900 FRC beams (unnotched) are taken from Maalej and Li
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Fig. 7. Predicted nominal strength for ductile FRC beams (K* < 0.01) as a function of the brittleness
number B and initial notch a, b
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Fig. 8. Comparison of size-effect in Spectra FRC, concrete, mortar and HSC in real dimensions.

(1994), Li et al. (1996) and Lim er al. (1997). The parameters used for the prediction are
7=075MPa,¢g =2, L, = 12.7mm, d, = 38 um and g,/b = 0.02. The results from the Size-
Effect Law [eqn (3)] are also included in Fig. 8 ( for concrete: G; = 37 J/m?, ¢; = 13.4 mm
for mortar: Gy = 20 J/m*, ¢; = 1.9 mm (Bazant and Kazemi, 1990)}. It can be seen from
Fig. 8 that Spectra 900 FRC shows much less size-effect than ordinary concrete, mortar
and HSC within the practical range of real sizes.

Figure 9 shows the bridging stress distribution as the bridging zone develops for
K* < 0.01 and for different brittleness numbers. In all four cases, the fracture process zone
remains attached to the initial notch tip when MOR 15 reached.

Size-effect on R-curve behatior
The fracture resistance curve ( R-curve) due to fiber bridging can be evaluated by (Rice,
1968)

(o)
Grla) = ‘ og(8) do (22)

JO

where 8, is the crack opening at the tip of a FPZ, which can be computed in the numerical
simulation for given values of «. Plotted in Fig. 10 are the R-curves corresponding to
various brittleness numbers for K* < 0.01 and (a) «y/b = 0.02 and (b) a,/b = 0.2. It is not
surprising to see that only for very large brittleness numbers the material fracture energy
G (due to fiber bridging) can be fully utilized. The fact that with the laboratory specimens,
the measured fracture energy G, (at maximum load) is always lower than the true one has
been found by many researchers (e.g., Li er a/., 1987; Li and Liang, 1986 Shah, 1984).
The shape of the curves are also quite different for different brittleness numbers. For
large brittleness numbers, the R-curves tend to concave downwards and saturate after
certain amount of crack extension, which is the typical, familiar shape of R-curves. For
small brittleness numbers, however, the R-curves tend to concave upwards. This unusual
behavior has been observed in FRCs with large /, (e.g., asbestos/cellulose cement mortar
(Mai, 1991)) and in ceramic composites with small b (e.g., Al/ALO; composite (Zok,
1991)). These computed R-curves may be useful to estimate the real material fracture energy
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Fig. 9. Bridging stress distribution as bridging zone develops for K* < 0.01 and different brittleness
numbers: (a) ALy, = 0.001: (b) £ily, = 0.01; (¢) A/l = 0.1;and (d) b/l = 1.0.

G; from G, data measured using small-size specimens. Figure 11 shows the prediction of
the ratio between measured fracture energy G. and material fracture energy G, if a notched
three-point bending FRC beam is to be used (ay/b = 0.2). This corresponds to the suggested
technique by Bazant and Pfeiffer (1987) for measurement of fracture energy of concrete
using geometrically similar specimens.

Critical crack length

The critical crack length «. is defined as the total crack length including the initial
notch and the bridging zone length when MOR is reached. This quantity sometimes is very
important if a simplified load-carrying capacity design method is to be used. which is
usually based on the stress distribution along the critical cross-section of a FRC beam. For
example, a recent Japanese design provision for steel-fiber-reinforced concrete (SFRC)
tunnel linings assumes that /b = 0.7 regardless of the size-effect. Since the estimated load
carrying capacity based on the stress-distribution over a. is sensitive to the critical crack
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Fig. 9. Cominued.

length, an tmproper choice of ¢, may lead to either over-conservative or unsafe design. This
issue was addressed by Nanakorn et al. (1996).

Plotted in Fig. 12 is the normalized critical crack length vs brittleness number curves
for K* < 0.01 ay/b = 0.02 and a,/b = 0.2. It 1s obvious that the normalized critical crack
tength strongly depends on the structural size. Caution needs to be taken in any design
practice with regard to this aspect. [t should be noted that in the cases presented in Fig. 12.
when the critical crack length is reached. it is fully bridged except in the initial notched
portion.

CONCLUSIONS

(1) Fiber bridging with increasing fiber volume fraction V7, interfacial bond strength ¢ and
fiber length L, gives rise to brittle-to-ductile transition of a FRC beam, and therefore
significantly reduces structural size effect (Ref, Fig. 4 and Fig. 5).
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and (by a,.'h = 0.2,

There are two types of brittle behavior of a« FRC beam: (a) brittleness due to large
structure size (FPZ zone relatively small; LEFM applicable) (Ref. Fig. 10}, and (b)
brittleness due to small structure size because of inadequate fracture process zone
development as limited by the small structure size. Both are quantified as a function of
the brittleness number A//,, and (K,,,/rft,x/n/ch:) as shown in Fig. 5.

When ductile failure is ensured by sufficient fiber bridging. the nominal strength of a
FRC beam is dictated by fiber and interface properties. Further increase in maximum
bridging stress o, leads to stronger size-effect due to the decreasing material charac-
teristic length /. Physically. as o, increases via increasing interfacial bond strength ¢
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or fiber volume fraction ¥, while fiber length L, is kept constant, the 646 curve in real
dimensions will have a steeper drop, which gives rise to stronger size-effect.

{4) R-curve behavior, critical fracture energy and crack length at MOR point are strongly
size-dependent. They should be carefully considered in a simplified FRC load-carrying
capacity design method based on stress-distribution at the critical beam cross-section
with assumed bridged crack length.
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APPENDIX

The weight function in (4) can be found in Tada er af. as follows

. 1 h{xaab) ,
Glyoa.b) = - e (Al)

e (bt iat) -
where

) glxia.ah)
DX @ i) s S

- (A2)
(V-abhy -

with g(.x'a. a'b) is defined by
Glros) = G () —rga () +r g (9 + 1 g, (5)

G (8) = 0,46+ 3065 +0.84(1 — 5} 4+ 0.6657 (1 —3)°

G-y} = -
Ggals) = 6.17--28.225+ 34,545 — 14.395" - (1 —5)" * = S88(1 — 5} — 2,645 (] - 5)°

5

gals) = —6.63+ 25105~ 31045 + 144157 4201~ 5} 25041 — )" + 198 (] 517 (A3)



